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Height functions for applying contact angles to 2D
VOF simulations
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SUMMARY

Recent work on a consistent representation of surface tension and on the accurate computation of interface
curvature has extended the applicability of the volume-of-fluid, or VOF, method to surface tension-driven
phenomena. We have extended these methodologies to interfaces near solid surfaces; specifically, we show
how height functions can be used to enforce a contact angle boundary condition at a contact line, for the
full range of contact angles. As such, this work may be viewed as following up on the methodology of
Renardy et al. (J. Comput. Phys. 2001; 171:243–263). This approach yields accurate values of curvature
and the surface tension force at contact lines, values that converge with mesh refinement. The efficacy
of the methodology is demonstrated using 2D examples of static fluid configurations in equilibrium and
dynamic contact line phenomena that approach known equilibrium configurations. Copyright q 2007 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerous methods have been devised for the simulation of interface kinematics. Among these,
the volume-of-fluid, or VOF, method is widely used for interfacial flow simulations because of its
relative simplicity and volume conservation properties. Until recently, however, the method has not
been regarded as appropriate for the study of surface tension-driven phenomena. However, recent
improvements to calculating curvature � and applying the surface tension force appear to resolve
this issue [1–5].
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These developments have yet to be extended to problems that involve contact lines, the lines that
form at the intersection of a fluid–fluid interface and a solid surface, as appear in phenomena that
involve, for example, sessile droplets and coatings. The focus of this paper, then, is the extension of
these methodology developments to contact lines, and as such, follows up on the work of Renardy
et al. [6] on a VOF approach to modelling 2D contact line phenomena based on an earlier (and
less accurate) approach to treating surface tension.

The common approach to modelling surface tension in VOF simulations is the continuum
surface force (CSF) method of Brackbill et al. [7], which treats surface tension as a volu-
metric force acting on fluid near an interface. In a subsequent paper, Kothe and Mjolsness [8]
demonstrated the use of CSF in the RIPPLE code and introduced the idea of reorienting inter-
face normals at cell vertices along a solid boundary to reflect a known contact angle; these
reoriented normals then affected both the orientation of neighbouring VOF reconstructions as
well as the calculation of local curvatures. This approach to applying a contact angle was
subsequently utilized by various authors (e.g. [9–11]) in numerical studies of contact line
phenomena.

As recent studies [1–5] have shown, older methodologies for applying surface tension in VOF
codes and for calculating normals and curvatures from volume fractions yield results that do not
converge with mesh refinement, and the resulting flows can be plagued by so-called spurious
or parasitic currents—aphysical velocities induced solely by discretization errors [12, 13]. In
these older methods (e.g. [7, 8, 14]), unit normals n̂=∇ f/|∇ f | and curvatures �=−∇ · n̂ are
obtained from the gradient of the volume fraction field or a smoothed version of the same.
Such gradient-based methods of calculating normals and curvatures have largely given way to
what may be termed ‘integral’ methods, in which these quantities are evaluated by various
geometric means [1, 3, 4, 15]; these are methods that clearly yield more accurate results when
interfaces are reasonably well resolved. It is the height function (HF) method [1, 3] that we
consider here.

The application of HFs to contact lines is not entirely new. Recent work on the develop-
ment of a VOF-based code for modelling wave impact [16] and liquid sloshing [17] phenomena
includes an approach to treating contact lines that is in some ways similar to that presented
here, albeit implemented in an entirely different type of flow code (a single fluid calculation,
a VOF methodology based on that of Hirt and Nichols [18], and surface tension incorporated
as a boundary condition to the pressure solve, rather than as a CSF volumetric force). Further-
more, this work [16, 17] is not about contact lines per se; hence, there is little analysis of the
methodology.

Our code is an extension of an early version of the ‘Gerris’ code of Popinet [19, 20] for the
solution of the incompressible Euler equations. We implemented surface tension and multi-fluid
viscosity models into the code, and then used that as the basis for developing the 2D HF-based
contact line VOF methodology presented here.

In this paper, we present the methodology and the results of various tests. We briefly examine
the errors in normals and curvatures for a semicircular drop initialized exactly, and demonstrate the
convergence with mesh refinement that is not obtained when calculating normals and curvatures
via gradient-based methods. We then consider the behaviour of drops in equilibrium, by examining
the magnitude of induced spurious currents and the associated errors in volume fractions, for
contact angles that range from 30 to 150◦. Finally, we consider contact line-driven flows, as a drop
initially in equilibrium is driven by a sudden change in the contact angle, and assess the results
by examining the equilibrium shapes that result.
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2. METHODOLOGY

2.1. Overview

The Navier–Stokes equations govern an incompressible two-phase flow:

�U/�t+∇ ·(UU )=−1

�
(∇ p+∇ ·(�(∇U+∇UT))+Fst+Fb) (1)

where U is the velocity, p the pressure, � the density, � the viscosity, Fst the volumetric surface
tension force, and Fb represents any other body forces acting on the fluid. Each fluid is considered
to be incompressible; hence the continuity equation

∇ ·U =0 (2)

is valid throughout the domain.
For a two-fluid system, a characteristic function f (=0 in a fluid 1 and =1 in fluid 2) is used

to track fluid volume. The advection equation for f is

� f/�t+U ·∇ f =0 (3)

Density and viscosity may vary from one fluid to another, but are assumed constant in any particular
fluid. These are evaluated using volume-weighted formulae:

�=�1+(�2−�1) f (4)

�=�1+(�2−�1) f (5)

where subscripts 1 and 2 refer to the two-fluid phases, respectively.
We implemented our methodology in an early version of the Gerris software [19, 20] that

solves the flow equations via an adaptively refined projection method based on a variable-density
fractional-step scheme [21]. Variables are collocated at cell centres and advection terms are
discretized using a second-order upwind scheme. A face-centred velocity field is exactly projected,
and a cell-centred velocity field is approximately projected, onto a divergence-free velocity field,
with the pressure field obtained as the solution of a Poisson equation. Since face-centred velocities
are divergence free, the function f is advected using these.

The equations are solved on a square mesh that is locally refined by recursively dividing cells
that satisfy a given criterion. The criterion used for all results presented in this paper is simply the
presence of a fluid interface. Cells are uniformly refined near the interface, in a band wide enough
to allow us to implement surface tension methods as on a uniform mesh; away from interfaces,
the mesh is typically coarser. In what follows, we refer to the finest level of refinement as �.

2.2. The VOF method

In a VOF method, the discrete form of the function f represents the volume fraction of a cell
filled with, in this case, fluid 2. Away from the interface, f =0 or 1; ‘interface cells’ correspond
to 0< f <1. Equation (3) is usually solved in two steps: a geometric interface reconstruction,
followed by an advection step based on the reconstructed interface. In this work, the recon-
struction is a ‘piecewise linear interface calculation’ (PLIC), followed by a Lagrangian advection
step [22].
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In the PLIC step, given the volume fraction in an interface cell and an approximate normal
vector, a linear interface is constructed within each cell, corresponding exactly to the normal and
the volume fraction. For many years, a common approach (e.g. [8, 14]) has been to calculate the
normal n=∇ f̃ , where f̃ is a smoothed (convolved) version of the volume fraction field f (such
an approach is equivalent to calculating ∇ f via a stencil that is wider than the simple 5-point
stencil in 2D).

Unfortunately, such normals do not converge with mesh refinement when the stencil size is
fixed [23], and increasing the stencil size with refinement can be prohibitively expensive. One
alternative that does yield normals that converge is the HF methodology, which is a variation
of the ELVIRA algorithm [15], and the basis for the contact line methodology presented in
this paper.

2.3. Surface tension implementation

The CSF model [7] is used to discretize the surface tension force Fst=���n̂ (� is the surface
tension coefficient, � the Dirac delta function, and n̂ a unit interface normal). Until recently, �n̂
was commonly discretized as ∇ f̃ and curvature was calculated as �=−∇ · n̂, where n̂=∇ f̃ /|∇ f̃ |.
However, this led to two problems: (i) the development of spurious currents, the magnitude of
which could overwhelm any real velocities in some problems; and (ii) very poor estimates of
curvature that in fact worsened with mesh refinement [1] when ∇ f̃ was calculated from a fixed
stencil.

Our methodology addresses both issues. First, recent work [3, 4] demonstrates that Fst should
be discretized in a way that is consistent with the discretization of ∇ p, so that for the simple case
of a static drop with exactly prescribed curvature, the surface tension induces the exact jump in
pressure �� and induces no spurious currents [13]. Second, methods are now available [1, 4] to
calculate curvatures from volume fractions that converge with mesh refinement; HFs are one such
method, that we utilize in this work.

We now briefly present our implementation of CSF in the Gerris flow solver. Following the
fractional-step projection method [21], Equation (1) is decomposed into predictor and corrector
steps:

U∗∗−Un

�t
=−[∇ ·(UU )]n+1/2+ 1

�n+1
∇ ·(�n(∇U+∇UT)

n
)+ 1

�n+1
Fn+1
st (6)

Un+1−U∗∗

�t
=− 1

�n+1
∇ pn+1 (7)

where �t= tn+1− tn and U∗∗ represents an intermediate velocity. For simplicity, we ignore the
convective and viscous terms in what follows and present only the treatment of the surface tension
term. The intermediate velocity in Equation (6) is computed as

U∗∗
cc =Un

cc+�t

((
1

�
Fst

)n+1

fc

)
f→c

(8)

where the subscripts cc and fc denote cell-centred and face-centred quantities, and f→c refers to
the cell-centred averaging of face-centred values. Since we discretize ∇ p at faces with a simple
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5-point stencil, a consistent Fst must have the following form:

(Fst)fc=(��∇ f )fc (9)

The intermediate velocities U∗∗ are not divergence free. Taking the divergence of Equation (7)
and imposing ∇ ·Un+1=0 yields a Poisson equation for the pressure:

∇ ·
(
1

�
∇ p

)n+1

cc
= 1

�t
∇ ·U∗∗

fc (10)

where U∗∗
fc is evaluated as

U∗∗
fc =

(
U∗∗
cc −�t

((
1

�
Fst

)n+1

fc

)
f→c

)
c→f

+�t

(
1

�
Fst

)n+1

fc
(11)

and c→ f denotes the face-centred averaging of cell-centred values. Equation (10) is then solved
for pressure pn+1

cc , and the cell-centred and face-centred velocities are updated as

Un+1
cc =U∗∗

cc −�t

((
1

�
∇ p

)n+1

fc

)
f→c

(12)

Un+1
fc =U∗∗

fc −�t

(
1

�
∇ p

)n+1

fc
(13)

Although the algorithm involves the averaging of quantities between cell faces and centres, it
nevertheless is a sharp methodology that yields only surface tension-induced velocities at faces
at which ∇ f is non-zero. More importantly, with this consistent implementation of CSF, if one
prescribes exact curvatures to a fluid configuration in equilibrium (e.g. static drop), the surface
tension force will exactly balance the pressure jump, whether the drop is isolated within another
fluid or is a sessile drop resting on a solid surface. This then implies that the accuracy of the
surface tension calculation at the contact line rests solely on the accurate evaluation of � near the
solid boundary.

2.4. The HF method

The HF methodology [1, 3, 5] is a technique for calculating interface normals and curvatures
from well-resolved volume fraction data, as illustrated in Figure 1. Consider a uniform mesh of
size �. About each interface cell, in the direction most normal to the interface (estimated here
by a simple finite difference evaluation of ∇ f [14]), fluid ‘heights’ are calculated by summing
volume fractions. In 2D, we construct either a 7×3 or 3×7 stencil around each interface cell.
For example, for the cell (i, j) illustrated in Figure 1, |ny |>|nx |; hence HFs are constructed by
summing volume fractions vertically:

hi =
k= j+3∑
k= j−3

fi,k� (14)
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Figure 1. The 7×3 stencil used to calculate fluid heights.

with corresponding expressions for hi−1 and hi+1. The heights h are then used to compute the
interface normal n and curvature � at cell centres:

ncc=
[
hx

−1

]
(15)

�cc= hxx
(1+h2x )

3/2
(16)

where hx and hxx are discretized using second-order central differences:

hx = hi+1−hi−1

2�
(17)

hxx = hi+1−2hi +hi−1

�2
(18)
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Note that for Equation (9) we require face-centred curvatures; these are estimated by simple
averaging of the cell-centred values �cc.

2.5. Contact angle boundary condition

In 2D, a contact line appears as the point at which a fluid–fluid interface meets a solid surface,
and for numerical methods that track interfaces, the position of the contact line is exactly known.
But here we track the interface implicitly via volume fractions; hence, we do not know the precise
location of the contact line. Instead, we define a ‘contact line cell’ as the interface cell along a
solid surface that neighbours an empty (for ��90◦) or full (for �>90◦) cell.

The boundary condition to be imposed at the contact line cell is the orientation of the interface,
characterized by the contact angle � (illustrated in Figure 2), the angle between the normal to the
interface at the contact line, ncl, and the normal to the solid boundary, nb. The value of � affects
the numerical methodology in two ways: it defines the orientation n of the VOF reconstruction in
the contact line cell, and it influences the calculation of Fst by affecting the calculated curvature.

In order to compute that curvature, we calculate fluid heights horizontally (for 45◦���135◦) or
vertically (for �<45◦ and �>135◦), as depicted in Figures 3 and 4, respectively. For 45◦���135◦
(Figure 3), we require a height h0 parallel to the solid surface; h0 is calculated so that the interface
normal n at the contact line corresponds to ncl:

h0=h1+�/ tan� (19)

For �<45◦ and �>135◦, vertical heights are calculated normal to the solid surface, as illustrated
in Figure 4 for the case of �<45◦; the extension of the methodology to the case of �>135◦
is straightforward. In order to calculate the individual heights, we require individual values of
volume fractions in the so-called ‘ghost cells’. We set f =1 in ghost cells beneath the fluid, and
we calculate the ghost cell value beneath the contact line by extending the reconstructed interface
in the contact line cell into the solid boundary, which then defines all heights except one; for the
fluid configuration illustrated in Figure 4, the height hi−1 is then calculated as

hi−1=hi −� tan� (20)

b

cl

Figure 2. The contact angle � defines the normal ncl to the interface at the contact line.
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2

1

0

Figure 3. Height functions constructed horizontally, for 45◦���135◦. The height h0 outside the domain
is determined so that the interface slope n at the contact line corresponds to ncl.

i-1 i i+1

Figure 4. Height functions constructed vertically, for �<45◦ and �>135◦. The height hi−1 is determined
so that the interface slope n at the contact line corresponds to ncl.

Finally, it is well known that contact line motion is a mathematical paradox, as the solid surface
is a no-slip boundary; as a result, the Navier–Stokes equations yield a stress singularity at the
contact line [24]. In order to alleviate that singularity, slip must be introduced [25, 26]; the extent
of slip is referred to as the slip length measured normal to the solid boundary. Numerically, the
approach to implementing slip depends on the method used to represent the interface. For example,
methods that explicitly track an interface (e.g. [27]) require a slip condition for the mesh node at
the contact line. On the other hand, most VOF implementations, including ours, utilize cell face
normal velocities to advect volume fractions, including those near the contact line. This implies
that the methodology includes an implicit slip length �/2 along no-slip boundaries.

3. RESULTS

In what follows, we briefly examine the accuracy of normals and curvatures calculated from
an exactly initialized volume fraction field; we then examine the behaviour of sessile drops at
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equilibrium; and finally, we present results of drops driven by a sudden change in the specified
contact angle.

3.1. HF normals and curvatures

Consider a 2D sessile drop of radius R=0.25 centred at the bottom of a 1×1 domain; Figure 5
illustrates the interface and the associated adaptive mesh. At equilibrium, �=90◦, the exact curva-
ture is 1/R, and the exact normal at any point (x, y) is (x/y,−1), for −0.5�x�0.5 and 0�y�1.
The 90◦ contact angle implies a symmetry boundary condition for the volume fractions; hence,
this problem corresponds to a test case of Francois et al. [3], who showed that HF curvatures are
second-order accurate. Table I presents the L∞ error for normals (evaluated as the angle between
the calculated and exact normals) and curvatures calculated using HFs, and for comparison, the
results obtained by calculating n̂=∇ f̃ /|∇ f̃ | and �=−∇ · n̂, where the stencil for ∇ f̃ is that of
Youngs [14]. The results are dramatic: normals computed from ∇ f̃ remain constant with refinement
and curvatures get worse. On the other hand, HF normals are first-order accurate, and curvatures
are second-order accurate.

The use of a 7×3 or 3×7 stencil for the HF calculation is obviously arbitrary, although it is
the size used previously [1, 3, 5]. However, for this simple problem, we ran the same calculation
with smaller stencils (5×3 or 3×5, and 3×3). The use of a 5×3 or 3×5 stencil yielded identical
results as for the 7×3 or 3×7, as the sessile drop is well resolved even at �= 1

64 . However, using
a 3×3 stencil, the results were dramatically different: the normals were reasonably accurate at
coarse resolutions, but did not converge appreciably with refinement; and the curvatures were very
inaccurate, and errors actually increased with refinement.

Figure 5. The adaptive mesh associated with a semicircular drop, �=90◦.
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Table I. L∞ error norms for normals and curvatures, for
a semicircular drop initialized exactly, � = 90◦.

HF ∇ f̃

� n̂ � n̂=∇ f̃ /|∇ f̃ | �=−∇ · n̂
1
64 0.0198 0.0500 0.0165 0.5964

1
128 0.0098 0.0130 0.0175 1.5504

1
256 0.0049 0.0030 0.0183 3.1786

Figure 6. Drops in equilibrium for �=30, 45, 60, 90, 120, and 150◦. Owing to symmetry,
only half of the domain is modelled.

3.2. Drops in equilibrium

Next we consider sessile drops, for contact angles that vary from 30 to 150◦ (Figure 6), in the
absence of gravity. For all cases, the drop volume is the same, equal to that of a semicircle of
R=0.5. The exact interface profiles are circular arcs defined by the given contact angle; the initial
volume fractions were computed to machine precision. This set of tests can be thought of as the
equivalent of the ‘static drop’ test utilized by many authors to assess implementations of surface
tension without contact lines. The expectation is that a drop initially at rest will remain so; here
we expect the sessile drops to behave similarly.
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Table II. The effect of �t on L1 and L∞ norms of spurious velocities,
for a drop in equilibrium, �=60◦, �= 1

64 .

�t �=1 �=10 �=20

L1
20×10−4 2.31E−8 1.74E−7 3.07E−7
10×10−4 2.43E−8 1.71E−7 3.04E−7
5×10−4 3.03E−8 1.83E−7 3.02E−7

L∞
20×10−4 1.44E−6 9.62E−7 1.03E−6
10×10−4 1.44E−6 9.56E−7 1.03E−6
5×10−4 1.45E−6 9.55E−7 1.02E−6

Table III. L1 and L∞ norms of spurious velocities as a function of
mesh refinement, for a drop in equilibrium, �=60◦, �t=10−3.

� �=10 �=50 �=100

L1
1
32 7.44E−7 1.84E−6 1.01E−6

1
64 1.71E−7 4.22E−7 2.19E−7

1
128 3.92E−8 1.02E−7 1.07E−7

L∞
1
32 3.69E−6 5.69E−6 2.32E−6

1
64 9.54E−7 1.45E−6 4.79E−7

1
128 2.44E−7 3.29E−7 2.48E−7

Table IV. L1 and L∞ error norms for volume fractions f as a function
of mesh refinement, for a drop in equilibrium, �=60◦, �t=10−3.

�x �=10 �=50 �=100

L1
1
32 5.23E−6 6.27E−5 7.61E−5

1
64 1.20E−6 1.48E−5 1.80E−5

1
128 2.50E−7 3.37E−6 4.22E−6

L∞
1
32 8.17E−4 4.65E−3 5.89E−3

1
64 4.89E−4 2.50E−3 3.22E−3

1
128 2.73E−4 1.20E−3 1.59E−3
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Table V. L1 and L∞ norms of spurious velocities when
the exact curvature (1/R) is imposed, for a drop in

equilibrium, �=60◦, �= 1
64 , �t=10−3.

�=10 �=50 �=100

L1
1.56E−10 2.39E−10 3.39E−10

L∞
8.06E−10 1.16E−9 9.39E−10

The domain size was 1×1 for 45◦���150◦, and 2×1 for �=30◦. Only half of a droplet was
modelled; a symmetry boundary condition was applied at the left side of the domain. Open boundary
conditions were applied at the right and top sides, and a no-slip condition was imposed at the solid
boundary on the bottom. The properties of water and air were used for all of the calculations.
The relevant non-dimensional quantity is the Ohnesorge number Oh=�w/

√
��wD, which is the

ratio of the viscous force to the surface tension force; D is the drop diameter and the subscript w
refers to water. For �=30, 45, 60, 90, 120, and 150◦, the corresponding Ohnesorge numbers are
Oh≈5.8×10−3, 7.8×10−3, 9.5×10−3, 1.2×10−2, 1.3×10−2, and 1.4×10−2, respectively.

We first present a convergence study based on the results for � = 60◦. We ran a set of computations
at various mesh resolutions (�= 1

32 ,
1
64 , and

1
128 ) and time steps (�t=20×10−4, 10×10−4, and

5×10−4). We determined the mean and maximum spurious velocities induced in the domain, and
then examined the effect of these velocities on how far the droplets deviated from the known
equilibrium positions, as measured by differences in volume fractions f :

L1=
N∑
i=1

| fi,exact− fi |�2
i (21)

L∞ =max | fi,exact− fi | (22)

Note that the definition of L1 includes �i ; the subscript i reflects the fact that the mesh is adaptive,
even though all interface cells are of size �. N is the number of cells in the domain.

Norms of mean and maximum spurious velocities, and f error norms, are presented in
Tables II–IV. Table II presents the effect of �t on spurious velocities, with �= 1

64 , at
different non-dimensional times �= t�/(�D). The spurious velocities grow with time, but
are very small and largely independent of �t . Based on these results, �t=10−3 was chosen
for all subsequent simulations; note that this �t is well below the capillary time step
constraint [7].

Table III presents the convergence behaviour of spurious velocities and Table IV the corre-
sponding f errors, as a function of mesh size, each at several times �. For the most part, the
norms of spurious velocities diminish at a second-order rate with mesh refinement; the norms
for �= 1

64 and 1
128 at �=100 are an anomaly, presumably because the norms of the spurious

velocities oscillate somewhat in time. The f errors presented in Table IV diminish more clearly
at a second-order rate. Overall, these results demonstrate that when normals and curvatures are
calculated via HFs, these contact line calculations converge.

For comparison, Table V presents the norms of spurious velocities when the exact curvature
is prescribed, for �= 1

64 . These values are three orders of magnitude less than the corresponding
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Figure 7. L1 and L∞ norms of spurious velocities versus the number of time steps, for �= 1
64 , �t=10−3.

Note that �=45∗ indicates the use of vertical heights at the contact line.

values of Table II, and evidence the consistent approach used to discretize Fst and ∇ p. The reason
these norms are not exactly zero is due to the tolerance (10−6) specified for the iterative pressure
Poisson solver. Nevertheless, Table V clearly shows the extent to which the velocities of Table III
originate from the curvature calculation.

We now present results for �=30, 45◦ (calculated using both horizontal and vertical HFs),
60, 90, 120, and 150◦, with �= 1

64 and �t=10−3. Figure 7 illustrates the evolution of spurious
currents with respect to time: the norms of these velocities quickly asymptote, albeit to values that
are a function of �. The corresponding errors in volume fractions are shown in Figure 8. Here, we
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Figure 8. L1 and L∞ error norms for volume fractions f versus the number of time steps, for �= 1
64 ,

�t=10−3. Note that �=45∗ indicates the use of vertical heights at the contact line.

also observe that the errors asymptote to maximum values, although more slowly than the spurious
currents, which are driving the fluctuations in f .

There are two reasons for the significant variation in the magnitude of spurious currents and
f errors as a function of �. First, the variations are roughly proportional to errors in calculated
contact line curvatures. For �=90◦, which corresponds to a symmetry condition for f at the
solid surface, contact line curvatures are as accurate as curvatures calculated anywhere else in the
domain. For �=60 and 120◦, the linear extrapolation of a horizontal fluid height into the ghost cells
(Equation (19)) affects the calculated contact line curvatures, although these values are still very
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Figure 9. Profiles of an initially semicircular drop to which contact angles �=30◦ (left), 60◦
(middle), and 120◦ (right) are suddenly applied; results at non-dimensional times �=40, 50,

60, 110, and 1600 (top to bottom); �= 1
64 , �t=10−3.

accurate. For �=30 and 150◦, the contact line curvatures are based on two linearly extrapolated
values, the vertical heights hi and hi−1 illustrated in Figure 4; these curvatures are then not as
accurate as those calculated from horizontal HFs. To further demonstrate the difference between
horizontal and vertical HFs, we ran the case of �=45◦ both ways. As Figures 7 and 8 illustrate,
the use of horizontal HFs yielded spurious velocities and f errors about an order of magnitude
lower than corresponding results obtained via vertical HFs.
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Figure 10. Mean and maximum velocities as an initially semicircular drop evolves to a steady state defined
by �=30, 60, and 120◦; �= 1

64 , �t=10−3.

The second reason for the variation of spurious currents and f errors is related to the effective
length of the contact line, which varies inversely with � because the drop volume is the same for
all cases. Thus, results for �=60◦ are more accurate than those for �=120◦, because the �=60◦
contact line is better resolved, everything else being equal; the same argument explains why the
�=30◦ results are more accurate than those for �=150◦. Having said that, note that the norms of
f errors presented in Figure 8 are very small. At worst (�=150◦), the maximum deviation of f
from an exact value is about 0.1, which corresponds to a deviation in interface position of about
�/10. The average deviation is orders of magnitude smaller, as are the deviations associated with
other values of �.
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Figure 11. The average and maximum differences between calculated interface profiles and the known
equilibrium configurations, as a function of non-dimensional time; �= 1

64 , �t=10−3.

3.3. Contact line-driven flows

Finally, to illustrate the overall performance of the methodology on problems that involve appre-
ciable flow, we present results of flow driven by the contact line. Of interest is the evolution of a
drop to a new equilibrium position due to a sudden change in the contact angle boundary condition.
Consider again the configuration of Figure 5. In the absence of gravity, the drop as illustrated is in
equilibrium if �=90◦. If at t=0 the value of � suddenly changes, then the droplet should move
towards a circular shape defined by the new contact angle. For the properties of water and air
(density ratio of 103, viscosity ratio of 102), the Ohnesorge number is Oh=1.2×10−2. The drop
volume, domain and mesh size, and boundary conditions are the same as those in Section 3.2.
Regarding mass conservation of the volume tracker in these cases, a comparison of the initial and
final total fluid volumes showed differences in the range of 0.001–0.00001%.
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Figure 12. Velocity fields at non-dimensional times �=20, 40, and 110 (top to bottom), as semicircular
drops move towards equilibrium states defined by �=120, 60, and 30◦ (left to right).

Figure 9 illustrates the flow of an initially semicircular drop to three new equilibrium positions
corresponding to �=30, 60, and 120◦. (We do not present results for �=150◦ because this large
value of � leads to the droplet pinching off of the solid surface; in the absence of gravity, the
droplet does not return to the surface.) We ran the simulations to steady state, when the velocities
in the domain approached values similar to the spurious velocities encountered in the results of
Section 3.2. Figure 10 shows the mean and maximum velocities as a function of time: the sudden
change in � at t=0 induces a sudden increase in the velocities that is followed by oscillations
as the interface settles into its equilibrium position. Figure 11 shows the deviation between the
calculated interface and the final equilibrium configurations, as measured by the norms defined
by Equations (21) and (22). Obviously, the L∞ deviation is 1 at the beginning, as the initial
and equilibrium shapes are quite different, but Figure 11 does illustrate that the droplets reach
equilibrium positions that are nearly as accurate as those presented in Section 3.2.

Finally, Figure 12 illustrates the flow fields about these contact line-driven drops, at different
times �. In particular, the streamlines clearly depict the vortices induced in the air above the
droplets, as the droplets evolve to their equilibrium positions, and the dissipation of the vortices
at later times (�=110), as the droplets approach their final positions.
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4. SUMMARY

The accurate evaluation of surface tension has been a long-standing challenge for the VOF method-
ology. Recent work has demonstrated a consistent approach to applying the surface tension force,
and better approaches to calculating normals and curvatures, that we have incorporated into an
adaptive VOF-based interfacial flow solver, and extended for the accurate evaluation of surface
tension at 2D contact lines. We demonstrated the accuracy and the convergence behaviour of
normals and curvatures calculated via HFs at the contact line, the magnitude of the spurious
currents that arise from simulations of interfacial phenomena in equilibrium, and results of contact
line-driven phenomena that demonstrate the efficacy of the methodology. We believe this work is
a step towards development of more sophisticated 2D and 3D contact line models.
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